61 research outputs found

    Incorporating chemical signalling factors into cell-based models of growing epithelial tissues

    Get PDF
    In this paper we present a comprehensive computational framework within which the effects of chemical signalling factors on growing epithelial tissues can be studied. The method incorporates a vertex-based cell model, in conjunction with a solver for the governing chemical equations. The vertex model provides a natural mesh for the finite element method (FEM), with node movements determined by force laws. The arbitrary Lagrangian–Eulerian formulation is adopted to account for domain movement between iterations. The effects of cell proliferation and junctional rearrangements on the mesh are also examined. By implementing refinements of the mesh we show that the finite element (FE) approximation converges towards an accurate numerical solution. The potential utility of the system is demonstrated in the context of Decapentaplegic (Dpp), a morphogen which plays a crucial role in development of the Drosophila imaginal wing disc. Despite the presence of a Dpp gradient, growth is uniform across the wing disc. We make the growth rate of cells dependent on Dpp concentration and show that the number of proliferation events increases in regions of high concentration. This allows hypotheses regarding mechanisms of growth control to be rigorously tested. The method we describe may be adapted to a range of potential application areas, and to other cell-based models with designated node movements, to accurately probe the role of morphogens in epithelial tissues

    Cell-Sorting at the A/P Boundary in the Drosophila Wing Primordium: A Computational Model to Consolidate Observed Non-Local Effects of Hh Signaling

    Get PDF
    Non-intermingling, adjacent populations of cells define compartment boundaries; such boundaries are often essential for the positioning and the maintenance of tissue-organizers during growth. In the developing wing primordium of Drosophila melanogaster, signaling by the secreted protein Hedgehog (Hh) is required for compartment boundary maintenance. However, the precise mechanism of Hh input remains poorly understood. Here, we combine experimental observations of perturbed Hh signaling with computer simulations of cellular behavior, and connect physical properties of cells to their Hh signaling status. We find that experimental disruption of Hh signaling has observable effects on cell sorting surprisingly far from the compartment boundary, which is in contrast to a previous model that confines Hh influence to the compartment boundary itself. We have recapitulated our experimental observations by simulations of Hh diffusion and transduction coupled to mechanical tension along cell-to-cell contact surfaces. Intriguingly, the best results were obtained under the assumption that Hh signaling cannot alter the overall tension force of the cell, but will merely re-distribute it locally inside the cell, relative to the signaling status of neighboring cells. Our results suggest a scenario in which homotypic interactions of a putative Hh target molecule at the cell surface are converted into a mechanical force. Such a scenario could explain why the mechanical output of Hh signaling appears to be confined to the compartment boundary, despite the longer range of the Hh molecule itself. Our study is the first to couple a cellular vertex model describing mechanical properties of cells in a growing tissue, to an explicit model of an entire signaling pathway, including a freely diffusible component. We discuss potential applications and challenges of such an approach

    Dynamics and Mechanical Stability of the Developing Dorsoventral Organizer of the Wing Imaginal Disc

    Get PDF
    Shaping the primordia during development relies on forces and mechanisms able to control cell segregation. In the imaginal discs of Drosophila the cellular populations that will give rise to the dorsal and ventral parts on the wing blade are segregated and do not intermingle. A cellular population that becomes specified by the boundary of the dorsal and ventral cellular domains, the so-called organizer, controls this process. In this paper we study the dynamics and stability of the dorsal-ventral organizer of the wing imaginal disc of Drosophila as cell proliferation advances. Our approach is based on a vertex model to perform in silico experiments that are fully dynamical and take into account the available experimental data such as: cell packing properties, orientation of the cellular divisions, response upon membrane ablation, and robustness to mechanical perturbations induced by fast growing clones. Our results shed light on the complex interplay between the cytoskeleton mechanics, the cell cycle, the cell growth, and the cellular interactions in order to shape the dorsal-ventral organizer as a robust source of positional information and a lineage controller. Specifically, we elucidate the necessary and sufficient ingredients that enforce its functionality: distinctive mechanical properties, including increased tension, longer cell cycle duration, and a cleavage criterion that satisfies the Hertwig rule. Our results provide novel insights into the developmental mechanisms that drive the dynamics of the DV organizer and set a definition of the so-called Notch fence model in quantitative terms

    Mechanisms and mechanics of cell competition in epithelia

    Get PDF
    When fast-growing cells are confronted with slow-growing cells in a mosaic tissue, the slow-growing cells are often progressively eliminated by apoptosis through a process known as cell competition. The underlying signalling pathways remain unknown, but recent findings have shown that cell crowding within an epithelium leads to the eviction of cells from the epithelial sheet. This suggests that mechanical forces could contribute to cell elimination during cell competition

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Search for Higgs Boson Pair Production in the Four b Quark Final State in Proton-Proton Collisions at root s=13 TeV

    Get PDF

    Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at root s=13 TeV

    Get PDF

    Capabilities and Limitations of Tissue Size Control through Passive Mechanical Forces

    Get PDF
    Embryogenesis is an extraordinarily robust process, exhibiting the ability to control tissue size and repair patterning defects in the face of environmental and genetic perturbations. The size and shape of a developing tissue is a function of the number and size of its constituent cells as well as their geometric packing. How these cellular properties are coordinated at the tissue level to ensure developmental robustness remains a mystery; understanding this process requires studying multiple concurrent processes that make up morphogenesis, including the spatial patterning of cell fates and apoptosis, as well as cell intercalations. In this work, we develop a computational model that aims to understand aspects of the robust pattern repair mechanisms of the Drosophila embryonic epidermal tissues. Size control in this system has previously been shown to rely on the regulation of apoptosis rather than proliferation; however, to date little work has been done to understand the role of cellular mechanics in this process. We employ a vertex model of an embryonic segment to test hypotheses about the emergence of this size control. Comparing the model to previously published data across wild type and genetic perturbations, we show that passive mechanical forces suffice to explain the observed size control in the posterior (P) compartment of a segment. However, observed asymmetries in cell death frequencies across the segment are demonstrated to require patterning of cellular properties in the model. Finally, we show that distinct forms of mechanical regulation in the model may be distinguished by differences in cell shapes in the P compartment, as quantified through experimentally accessible summary statistics, as well as by the tissue recoil after laser ablation experiments
    • 

    corecore